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Abstract. Let R be a one-dimensional local Noetherian domain with max-
imal ideal m, quotient field K and residue field R/m := k. We assume that the
integral closure R of R in its quotient field K is a DVR and a finite R-module.
We assume also that the field k is isomorphic to the residue field of R. For I a
proper ideal of R, denote the inverse of I by I∗; that is, I∗ is the set (R :K I) of
elements of K that multiply I into R. We investigate two numerical invariants
associated to a proper ideal I of R that have previously come up in the literature
from various points of view. The two invariants are: (1) the difference between
the composition lengths of I∗/R and R/I, and (2) the difference between the
product, when the composition length of R/I is multiplied by the composition
length of m∗/R, and the length of I∗/R. We show that these two differences can
be expressed in terms of the type sequence of R, a finite sequence of positive
integers related to the natural valuation inherited from R.

1 Introduction.

We begin by giving the setting of the paper.

Setting 1.1 Let (R,m) be a one-dimensional local Noetherian domain with
quotient field K and residue field k. We assume throughout that the normaliza-
tion R of R is a DVR and a finite R-module, i.e. R is analytically irreducible.
Let t ∈ R be a uniformizing parameter for R, so that tR is the maximal ideal
of R. We also suppose that the field k is isomorphic to the residue field R/tR,
i.e. R is residually rational.

A fractional ideal ω of R is called a canonical ideal of R provided that for any
nonzero fractional ideal I we have I = (ω :K (ω :K I)), where for two fractional
ideals J, L we denote (J :K L) = {a ∈ K | aL ⊆ J}. Throughout the paper
we make heavy use of the canonical ideal. We notice in the next section, after
Notation 2.2, that in our setting a canonical ideal ω exists and we can assume
that R ⊆ ω ⊆ R.
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The theorem below is well known:

Theorem 1.2 ([3], [10], [12, Theorem 13.1]) With R,m,K as in Setting 1.1,
the following statements are equivalent:

(1) R is Gorenstein.

(2) ω = R.

(3) The composition length of m∗/R is 1, where m∗ := (R :K m).

(4) The composition length of R/C is twice that of R/R, where C := (R :K R)
is the conductor ideal.

(5) For every nonzero proper ideal I of R, the composition length of R/I equals
the composition length of I∗/R, where I∗ := (R :K I) is the inverse of I.

In this paper we consider two numerical invariants related to properties
(1)−(5) of Gorenstein rings from the theorem above.

Notation 1.3 We write "R(M) for the composition length of a module M . The
Cohen-Macaulay type of R, which we denote by r, is "R(m∗/R). For I a proper
ideal of R, we define the invariants a(I) and b(I) as follows:

a(I) := "R(I∗/R)− "R(R/I)

b(I) := r"R(R/I)− "R(I∗/R).

In view of the properties (1)−(5) above, these invariants measure how far R
is from being Gorenstein. For a Gorenstein ring and I a proper ideal, (1.2.3)
and (1.2.5) imply that r = 1, a(I) = 0, and so b(I) = 0. In 1963, R. Berger
conjectured that a(I) might always be non-negative [3]. Counterexamples were
given by J. Jäger in 1977; in particular,

R = k[[t9, t15, t17, t23, t25, t29, t31]], I = (t38, t44, t50) =⇒ a(I) = −1,
as he shows in [10]. We show in Theorem 3.16.5 that in our setting “almost
Gorenstein” rings do satisfy a(I) ≥ 0, for all reflexive ideals I.

We recall the definition.

Definition 1.4 [2, Definition-Proposition 20.] Let (R,m) be a one-dimensional
local Cohen-Macaulay ring with finite integral closure and with a canonical ideal
ω such that R ⊆ ω ⊆ R. Let r be the Cohen-Macaulay type of R from (1.3).
The ring R is called almost Gorenstein if one of the equivalent conditions (1)
and (2) below holds:

(1) m = m ω.
(2) r − 1 = 2"R(R/R)− "R(R/C).

In this article we prove that properties similar to (1)−(5) of Theorem 1.2 char-
acterize almost Gorenstein rings in our setting. We give part of the characteri-
zation below:



Theorem 1.5 Let (R,m) be as in Setting 1.1 and let ω be a canonical ideal of
R with R ⊆ ω ⊆ R. Let r be the Cohen-Macaulay type of R. Then R is almost
Gorenstein if and only if a(I) = r− 1− "R(I∗∗/I) for every non-principal ideal
I contained in R.

The inequalities a(I) ≤ 2"R(R/R) − "R(R/C) and b(I) ≥ 0 hold for every
nonzero ideal I (see Remark 3.1). In [10] Jäger finds another upper bound for
a(I), namely a(I) ≤ (r − 1)"R(R/I).

In Theorem 3.11, we obtain expressions for the invariants a(I) and b(I) in
terms of the type sequence [r1, ..., rn], defined in (2.5), where n = "R(R/C).
These expressions yield new lower and upper bounds and vanishing conditions
for the invariants. For example we obtain the inequality

a(I) ≤ (r − 1)"R(R/I∗∗)− "R(I∗∗/I),
which improves the inequality of Jäger referred to above. Another consequence
of the expression for a(I) in Theorem 3.11 is that we get a new sufficient condi-
tion for a(I) to be positive. Also, when I is an integrally closed ideal or when
ω ⊆ (I :K I), we see that a(I) ≥ r−1 ≥ 0. Moreover, if R is almost Gorenstein,
then a(I) = r − 1 for every non-principal reflexive ideal I.

Regarding the invariant b(I), on the other hand, more attention has been
reserved for the particular case of I = C, the conductor ideal of R. A general
structure theorem for rings satisfying the equality b(C) = 0 or b(C) = 1 is given
in the 1992 article of W. Brown and H. Herzog [4].

In their 1997 paper [5], M. D’Anna and D. Delfino find the upper bound
b(C) ≤ (r − 1)("R(R/C) − 1). In a series of papers, they attack the problem of
classifying rings according to the value of the quantity b(C) with other authors
[6], [7], [8]. In the present authors’ earlier work with F. Odetti [15], the lower
bound of (r − 1)"R(ω∗/C) is given for b(C). From the expressions in Theorem
3.11, we get the following bounds for b(I):

b(I) ≤ (r − 1)("R(R/I)− 1) + "R(I∗∗/I) + d(I),
b(I) ≥ r "R(I∗∗/I) ≥ 0, which hold for every proper ideal I, and
b(I) ≥ (r− 1)"R((I∗∗+ω∗)/I)+ "R(I∗∗/I), valid, for instance, when I ⊆ ω∗,

as well as a necessary and sufficient condition on the vanishing of b(I):
(V C) b(I) = 0 ⇐⇒ I∗∗ = I, d(I) = 0 and ri = r for all i /∈ V I ,

where the terms V I and d(I) are defined in (3.5). The set V I is a subset of
IN and consists of indices associated to the values of I (considering the usual
valuation for the DVR R); the non-negative invariant d(I) is the difference
between certain composition lengths associated with I.

These bounds for b(I) extend the bounds obtained in [5] and [15] for b(C),
which were mentioned above. The condition (VC) for I = C yields that b(C) = 0
if and only if the type sequence is constant and equals [r, r, ..., r].

In Section 2 we state preliminaries and notation; this includes properties of
the canonical ideal and the definition of the type sequence. In Section 3, we
undergo a thorough analysis of a(I) and b(I) as outlined above, and we obtain
the quoted theorem, which establishes equivalences to the almost Gorenstein
property. In Section 4 we give an example of application of the preceding results,



specializing to the case where I = C. Under the same setting, these methods
can be developed to classify all the domains having b(C) ≤ 3(r − 1) (see [17]).

2 Preliminaries and notation.

Setting 2.1 Let (R,m) be a one-dimensional local Noetherian domain with
residue field k and quotient field K. We assume throughout that the normal-
ization R of R in K is a DVR and a finite R-module, i.e., R is analytically
irreducible. Let t ∈ R be a uniformizing parameter for R, so that tR is the
maximal ideal of R. We also suppose that the field k is isomorphic to the
residue field R/tR, i.e., R is residually rational. We denote the usual valuation
on K associated to R by v; that is, v : K −→ ZZ∪∞, and v(t) = 1. In particular,
v(R) := {v(a) | a ∈ R, a += 0} ⊆ IN is the numerical semigroup of R. Then,
since the conductor C := (R :K R) is an ideal of both R and R, there exists a
positive integer c so that C = tcR, "R(R/C) = c and c ∈ v(R). Furthermore,
(R :K C) = R. We list the elements of v(R) in order of size: v(R) := {si}i≥0,
where s0 = 0 and si < si+1, for every i ≥ 0. Let n be the positive integer so
that sn = c. For every i ≥ 0, let Ri denote the ideal of elements whose values
are bounded by si, that is,

Ri := {a ∈ R | v(a) ≥ si}.

Notation 2.2 We assume Setting 2.1. The following is a list of symbols and
relations to be used in the sequel. Some are repeated from above.

• t ∈ R is such that tR is the maximal ideal of R and v(t) = 1.
• v(R) = {v(a) | a ∈ R, a += 0} =: {si}i≥0, where 0 = s0 < s1 < ....
• Ri := {a ∈ R | v(a) ≥ si}.
• C := (R :K R) = tcR, then (R :K C) = R.
• δ := "R(R/R), the singularity degree of R.
• c := "R(R/C).
• n is such that sn = c, C = Rn, n = "R(R/C) = c− δ.
• r := "R(m∗/R), the Cohen-Macaulay type of R.

For fractional ideals I, J :
• (I : J) := (I :K J) = {a ∈ K | aJ ⊆ I}.
• I∗ := (R : I).
• CI := (I : R), the largest R-ideal contained in I.

Let I be a proper ideal of R and let y ∈ I be such that IR = yR. Then:
• a(I) := "R(I∗/R)− "R(R/I).
• b(I) := r"R(R/I)− "R(I∗/R)
• e(I) := v(y), the multiplicity of I, so that te(I)R = IR.
• e := e(m), the multiplicity of R.
• c(I) := "R(R/CI), so that tc(I)R = CI ; c ≤ c(I) since CI ⊆ C.
• nI is such that snI = c(I), CI = RnI , nI = "R(R/CI) = c(I)− δ.
• h(I) is such that sh(I) = e(I), the first element of v(I) and of v(I∗∗). Then

h(I) = |v(R) ∩ [0, e(I)− 1]|.



• I := IR ∩R, the integral closure of I.
From the definition of I, it follows that

(2.2.1) e(I) = e(I) and Rh(I) = I.

For a one-dimensional Cohen-Macaulay ring R with total ring of fractions
K, a fractional ideal ω is a canonical ideal provided that ω contains a nonzero
divisor and for every fractional ideal I which contains a nonzero divisor we
have I = (ω : (ω : I)). For a one-dimensional local Cohen-Macaulay ring R a
canonical ideal exists if and only if the completion R̂p is a Gorenstein ring for
every minimal prime ideal p of the completion R̂ of R with respect to its maximal
ideal [9, Satz 6.21]. In our Setting 2.1 the completion R̂ of R with respect to its
maximal ideal is reduced [12, Theorem 10.2], hence R has a canonical ideal ω,
which is unique up to isomorphism [9, Satz 2.8]. The hypothesis R analytically
irreducible assures that we can assume

R ⊆ ω ⊆ R
[10, Korollar 1].

By [13, Proposition 1], with this setting, given a pair of fractional nonzero
ideals I ⊇ J , the hypothesis R residually rational allows us to compute the
length of the R-module I/J by means of valuations:

(2.2.2) "R(I/J) = |v(I) \ v(J)|.

In the following proposition we recall some well-known properties of the
canonical ideal.

Proposition 2.3 Let ω be a canonical ideal for R such that R ⊆ ω ⊆ R. Then:

(1) (ω : ω) = R.

(2) "R(I/J) = "R((ω : J)/(ω : I)) and "R(J∗/I∗) = "R((ωI)/(ωJ)) for every
pair of fractional ideals J ⊆ I.

(3) R is Gorenstein if and only if ω∗ = R.
If R is not Gorenstein, then C ⊆ ω∗ ⊆ m.

(4) v(ω) = {j ∈ ZZ | c− 1− j /∈ v(R)}.
In particular c− 1 /∈ v(ω) and c + IN ⊆ v(ω).

(5) For every fractional ideal I, s ∈ v(Iω) if and only if c− 1− s /∈ v(R : I).

Proof. Item 1 and the first equality of (2) are in [9, Bemerkung 2.5]. It
follows that "R(J∗/I∗) = "R((ω : ωJ)/(ω : ωI)) = "R((ωI)/(ωJ)); hence (2) is
clear. Since the assumption R ⊆ ω ⊆ R implies that C = (R : R) ⊆ ω∗ ⊆ R,
part (3) is easily derived, recalling that R is Gorenstein if and only if ω = R
[12, Theorem 13.1].

For items 4 and 5 see [10, Satz 5] and [15, Lemma 2.3]. .

Remark 2.4 Let I be a proper ideal of R. The integral closure I and the
bidual I∗∗ of I satisfy the following relations:



(2.4.1) I ⊆ I∗∗ ⊆ I, I∗∗ ⊆ ωI = ωI∗∗, e(I∗∗) = e(I), since e(I) = e(I).

To see the non-obvious relations, I∗∗= (R : (R : I)) ⊆ (ω : (R : I)) = I ω ⊂ IR,
hence I∗∗ ⊆ I, and "R((ωI∗∗)/(ωI)) = "R(I∗/I∗∗∗) = 0.

We note also:
(2.4.2) The condition ω ⊆ (I : I), i.e. ωI = I, implies that I = I∗∗.

Now we recall the notion of type sequence, first introduced by Matsuoka in
his 1971 paper [13] and recently revisited in [1].

Definition 2.5 The ideals Ri defined in (2.1) give a strictly increasing sequence
R = R0 ⊃ R1 = m ⊃ R2 ⊃ . . . ⊃ Rn = C ⊃ Rn+1 ⊃ ... ,

which induces the chain of duals:
R ⊂ (R : R1) ⊂ ... ⊂ (R : Rn) = R ⊂ (R : Rn+1) = t−1R ⊂ ....

We put ri := lR((R : Ri)/(R : Ri−1)), i ≥ 1, and we call the finite sequence of
integers [r1, . . . , rn] the type sequence of R.

Example 2.6 Let R = k[[t5, t8, t11]], where k is a field and t an indeterminate.
Then R = k[[t]], and v(R) = {0, 5, 8, 10, 11, 13, 15, 16, 18 →}, so that

C = t18k[[t]], c = 18, n = 8, δ = 10, e = 5.
v(ω) = {0, 3, 5, 8, 10, 11, 13, 14, 15, 16, 18 →}. Hence
ω = R + t3R and r = lR(ω/(mω)) = 2, by (2.3.2).
The type sequence is [2, 1, 1, 1, 2, 1, 1, 1].

Consider now the proper ideal I = (t10, t13).
v(I) = {10, 13, 15, 18, 20, 21, 23, 24, 25, 26, 28 →}, so that e(I) = 10,
I = t10k[[t]]∩R = (t10, t11, t13), CI = t28k[[t]], c(I) = 28, nI = 18, h(I) = 3,
v(I∗) = {−5,−2, 0, 3, 5, 6, 8, 9, 10, 11, 12...}, hence
a(I) = "R(I∗/R)− "R(R/I) = 8− 8 = 0,
b(I) = r"R(R/I)− "R(I∗/R) = 8.
v(I∗∗) = {10, 13, 15, 18, 20, 21, 23→}, hence I∗∗ = (t10, t13, t27); furthermore
v(ωI) = {10, 13, 15, 16, 18, 20, 21, 23 →}, and the inclusions I ⊆ I∗∗ ⊆ ωI of

(2.4.1) are strict.

We list some properties of type sequences, which are useful in the sequel.

Proposition 2.7 Let ri, n, c, δ be as above. Then:

(1) The first element of the type sequence is the Cohen-Macaulay type r of R.

(2) 1 ≤ ri ≤ r for every i ≥ 1 and ri = 1 for every i > n.

(3) δ =
∑n

1 ri.

(4) 2δ − c = "R(ω/R) =
∑n

1 (ri − 1) =
∑∞

1 (ri − 1).

(5) The elements of v(ω∗) give rise to 1’s in the type sequence:
si ∈ v(ω∗) =⇒ ri+1 = 1.

(6) ri = "R((ωRi−1)/(ωRi)), for every i.



Proof. Items 1, 3, 4 follow directly from Definition 2.5. Property (2) follows
from the next lemma. Item 5 is proved in [15, Proposition 3.4]. Item 6 is
immediate, by (2.5) and (2.3.2). .

Lemma 2.8 [10, Satz 2]. Let (R,m) be a local Cohen-Macaulay ring of dimen-
sion one. Let M,N, I, be fractional ideals such that I ⊆ N . Then

"R((M : I)/(M : N)) ≤ "R((M : m)/M) · "R(N/I).

Definition 2.9 With Setting 2.1 and Notation 2.2, the ring R is said to have
maximal length if r(c− δ) = δ, that is, rn = δ.

Remarks 2.10 (1) Using (2.7.4), we recover immediately the cases of minimal
and maximal type sequence (see Definitions 1.4 and 2.9):
• R is almost Gorenstein if and only if the type sequence is [r, 1, . . . , 1].
• R is of maximal length if and only if the type sequence is constant: [r, r, . . . , r].

(2) By Equality (2.7.4), we have that r − 1 ≤ 2δ − c.

Next we include some relations involving the conductor of a proper ideal,
the invariants ri defined in (2.5) and some quantities from (2.2).

Proposition 2.11 Let I be a proper ideal of R with conductor CI = tc(I)R ⊆ I.
Then:

(1) (R : CI) = tc−c(I)R, c ≤ c(I), and v(R : CI) = ZZ≥c−c(I).

(2)
∑nI

i=1 ri = "R((R : CI)/R) = c(I)− c + δ.

(3)
∑nI

i=1(ri − 1) = 2δ − c.

(4) "R(I∗/R) =
∑nI

i=1 ri − "R((R : CI)/I∗).

Proof. Using assertion (1), which is immediate, we obtain (2):
"R((R : CI)/R) = "R((tc−c(I)R)/R) + "R(R/R) = c(I)− c + δ.

Formula (3) comes directly from (2). From (2) and from the inclusions
R ⊆ R
|∩ |∩
I∗ ⊆ (R : CI)

we deduce equality (4). .

3 Invariants a(I) and b(I).

The aim of the section is to express the invariants a(I) and b(I) defined in
(1.3) in terms of the type sequence of R. The particular description given
in Theorem 3.11 allows us to get bounds and vanishing conditions, improving
results of several authors. First we collect some remarks concerning a(I) and
b(I).

Throughout this section we let R denote a local ring as in Setting 2.1 and
we use Notation 2.2.



Remarks 3.1 (1) We give the values of a(I) and b(I) in some special cases:
I = C =⇒ a(C) = 2δ − c, b(C) = r(c− δ)− δ;
I = m =⇒ a(m) = r − 1, b(m) = 0;
I = (f), a principal ideal with v(f) = s =⇒ a(I) = 0, b(I) = (r − 1)s.

The statements for C are immediate from (2.2). For I = (f), it suffices to note
that lR(I∗/R) = lR((f−1R)/R) = lR(R/(f)) = lR(R/(fR)) = s.

(2) In [10, Hilfssatz 1] it is shown that, for every proper ideal I,
a(I) = a(C)− "R((ωI)/I) ≤ a(C).

As a consequence we have the following:
(a) a(I) = 0 for every proper ideal I ⇐⇒ R is Gorenstein.
(b) a(m) = a(C) ⇐⇒ R is almost Gorenstein (see Definition 1.4).

(3) There is a simple formula relating our invariants, which comes directly
from the definitions: a(I) + b(I) = (r − 1)"R(R/I).

(4) The invariant b(I) satisfies b(I) ≥ 0 for every ideal I.
This fact follows by applying Jäger’s inequality in Lemma 2.8 above with M =
N = R.

(5) Let I, J be two proper ideals such that J ⊆ I. Then:
(a) a(J)− a(I) = "R(J∗/I∗)− "R(I/J).
(b) b(J)− b(I) = r"R(I/J)− "R(J∗/I∗) ≥ 0. In particular:
(c) a(I) = a(I∗∗)− "R(I∗∗/I).
(d) b(I) = 0 for every ideal I containing C if and only if R is a ring of maximal

length (see Definition 2.9).
A direct calculation gives assertion (a), hence (b) follows from equality (3). The
positivity of b(J)− b(I) is again a consequence of Jäger’s result (2.8).

(6) Consider for i ∈ IN the invariants ri introduced in (2.5). By definition
we have that

∑i
h=1 rh = "R((R : Ri)/R). Therefore,

(a) a(Ri) =
∑i

h=1(rh − 1); in particular, a(Ri) = 2δ − c, for every i ≥ n.

(b) b(Ri) =
∑i

h=1(r − rh); in particular, b(C) =
∑n

h=1(r − rh).
If i ≥ n, then b(Ri) = b(C) + (i− n)(r − 1). In fact,
b(Ri) =

∑n
h=1(r − rh) +

∑i
h=n+1(r − rh)

= b(C) + (i− n)(r − 1), by (2.7.2).

In the second part of the next proposition we improve the inequality
a(I) ≤ (r− 1)lR(R/I) for Arf rings. The term Arf ring originates with Lipman
in [11], where the precise definition can be found. For the purposes of this article
and this setting, the definition of Arf can be taken to be the characterization
given by D’Anna and Delfino in [5, Proposition 1.15]. For each i with 1 ≤ i ≤ n,
let Ci := ((R : Ri) : R) be the conductor of the ring (R : Ri). Then the ring R
is an Arf ring if and only if

3.2( ) "R((R : Ri)/Ci) = "R(R/C)− i for each i with 1 ≤ i ≤ n.

Furthermore D’Anna and Delfino show for an Arf ring R



3.3( ) "R(R/Ci) = c− si [5, Lemma 2.5].

Proposition 3.4 The following facts hold.

(1) R is Arf if and only if "R((R : Ri)/R) = si − i for every 1 ≤ i ≤ n.

(2) If R is Arf, then for every proper ideal I of R

a(I) ≤ (r − 1)"R(R/I)− (e h(I)− e(I)).

Proof. We have R⊇ (R : Ri)⊇ R and (R : Ri)⊇Ci, and so "R((R : Ri)/R) =
"R(R/R)− "R(R/Ci) + "R((R : Ri)/Ci). Thus (1) holds.

We now assume R is Arf. Using the definition from (2.2), the item 1 above
and "R(R/Ri) = i, we have

a(Ri) = "R((R : Ri)/R)− "R(R/Ri) = si − 2i.
On the other hand, every Arf ring has maximal embedding dimension, or, equiv-
alently, maximal Cohen-Macaulay type r = e−1 [11, Theorem 2.2]. Thus, using
(3.1.4), we obtain, for all i ≥ 0,

0 ≤ b(Ri) = r"R(R/Ri)− "R((R : Ri)/R)
= (e− 1)i− (si − i) = ei− si.

Now, to show the inequality in item 2, we consider the ideals I ⊆ Rh(I) = I, as
in Notation 2.2. By (3.1.5.b), b(I)− b(Rh(I)) ≥ 0; hence

b(I) ≥ b(Rh(I)) = e h(I)− sh(I) = e h(I)− e(I) ≥ 0,
by the argument above, where i = h(I), and so si = e(I). We use Remark 3.1.3
to obtain the desired inequality. .

We need now to introduce a new invariant d(I) for every proper ideal I. It
will be very useful in the next computations.

Notation 3.5 For I a proper ideal of R, let nI ,CI be as in (2.2). We set:

• V I := {h + 1 | h ∈ IN and sh ∈ v(I∗∗)}.

• d(I) := "R((R : CI)/I∗)−
∑

rh | h ∈ V I ∩ [1, nI ].

Remarks 3.6 (1) The number h(I) + 1 (see Notation 2.2) is the first element
in V I , since sh(I) = e(I) = e(I∗∗) as in (2.4.1). Also nI + 1 ∈ V I since
snI = c(I) ∈ v(I∗∗).

(2) Note that d(I) is an invariant for isomorphism classes, namely d(I) =
d(uI) for every unit u ∈ R, since lengths can be computed using values as
remarked in (2.2.2).

(3) The cardinality of the set V I defined in (3.5) has a precise meaning in
terms of lengths: |V I∩[1, nI ]| = "R(I∗∗/CI), and |V I∩[1, n]| = "R((I∗∗+C)/C).
Moreover, |IN \ V I | = "R(R/I∗∗).

(4) In a ring of maximal length rh = r for all h ≤ n; hence for every proper
ideal I we have d(I) = "R((R : CI)/I∗)− r"R(I∗∗/CI).

(5) The inequalities: |V I ∩ [1, nI ]| ≤
∑

h∈V I∩[1,nI ] rh ≤ r|V I ∩ [1, nI ]|, valid
by virtue of (2.7.2), imply that

"R((R : CI)/I∗)− r"R(I∗∗/CI) ≤ d(I) ≤ "R((R : CI)/I∗)− "R(I∗∗/CI).



Proposition 3.7 Let R be as in Setting 2.1. For every proper ideal I we have
the following relations:

(1) d(I) = "R((ωI)/I∗∗)−
∑

(rh − 1) | h ∈ V I .
In particular, if I is a principal ideal, then d(I) =

∑
(rh − 1) | h /∈ V I .

(2) d(I∗∗) = d(I).

(3) If I ⊆ ω∗, then d(I) = "R((ωI)/I∗∗).

(4) If ω ⊆ (I : I), then d(I) = 0.

(5) d(I) =
∑

rh − "R(I∗/R∗h(I)) | h > h(I), h /∈ V I .

(6) If I is integrally closed, then d(I) = 0.

Proof. Since R ⊆ ω ⊆ R, we have CI ⊆ CIω ⊆ CIR = CI ; thus CIω = CI .
Now, by (2.3.2),

"R((R : CI)/I∗) = "R((ωI)/(ωCI)) = "R((ωI)/CI).
Also CI ⊆ I ⊆ I∗∗ ⊆ ωI, using (2.4.1). This implies

d(I) = "R((ωI)/CI)−
∑

rh | h ∈ V I ∩ [1, nI ], from (3.5),
= "R((ωI)/I∗∗) + "R(I∗∗/CI)−

∑
rh | h ∈ V I ∩ [1, nI ]

= "R((ωI)/I∗∗) + |V I ∩ [1, nI ]|−
∑

rh | h ∈ V I ∩ [1, nI ], using (3.6.3),
= "R((ωI)/I∗∗)−

∑
(rh − 1) | h ∈ V I ∩ [1, nI ]

= "R((ωI)/I∗∗)−
∑

(rh − 1) | h ∈ V I ,
where the last equality holds because rh = 1 for all h > nI , since nI ≥ n, by
(2.7.2). If I is principal, then d(I) = "R(ω/R)−

∑
h∈V I (rh−1) =

∑
h/∈V I (rh−1),

by (2.7.4). Thus item 1 holds.
For item 2, recall that ωI = ωI∗∗, by (2.4.1), and that V I = V I∗∗ from the

definition in (3.5). Now apply (1).
The assumption I ⊆ ω∗ in (3) implies that I∗∗ ⊆ ω∗∗∗ = ω∗. Hence assertion

(3) follows from (1) using (2.7.5).
To prove (4), observe that the inclusion ω ⊆ (I : I) implies ωI = I = I∗∗,

by (2.4), and also I ⊆ ω∗; hence the conclusion by part (3).
After writing "R((R : CI)/I∗) = "R((R : CI)/R∗h(I))− "R(I∗/R∗h(I)), formula

(5) becomes clear, since "R((R : CI)/R∗h(I)) =
∑

rh | h ∈ (h(I), nI ], by definition
of the invariants rh, and (h(I), nI ] \ (V I ∩ [1, nI ]) = {h | h > h(I), h /∈ V I}.

Since I = I means I = Rh(I), the set {h > h(I), h /∈ V I} is empty; hence
the equality (5) readily implies (6). .

The basic idea for the next theorem comes from (2.3.5), which establishes a
duality between the valuations of ωI and those of I∗.

Theorem 3.8 Let R be as in Setting 2.1. For every proper ideal I we have:

(1) "R(I∗∗/CI) ≤
∑

h∈V I∩[1,nI ]

rh ≤ "R((R : CI)/I∗).



(2) "R(I∗/R) ≤
∑

h/∈V I

rh = "R(R/I∗∗) +
∑

h/∈V I

(rh − 1).

Proof. The proof is substantially the same as in [16, Proposition 4.2]; some
changes are necessary, because we don’t assume that I is a reflexive ideal con-
taining the conductor C.

The first inequality of item 1 is immediate from (3.6.3). To prove the second
inequality, suppose that h ∈ V I ∩ [1, nI ]. That is, by the definition in (3.5),
sh−1 ∈ v(I∗∗) and 1 ≤ h ≤ nI . Choose xh−1 ∈ I∗∗ so that v(xh−1) = sh−1.
Recall that sh−1 < sh ≤ c(I), since h− 1 < h ≤ nI . Now

rh = "R((ωRh−1)/(ωRh)), by (2.7.6),
= |(v(ωRh−1) \ v(ωRh))|, by (2.2.2),
= |(v(ωxh−1) \ v(ωRh))|, since Rh−1 = {a ∈ R | v(a) = sh−1} ∪Rh.

Now xh−1 ∈ I∗∗, and so v(xh−1ω) ⊆ v(ωI∗∗) = v(ωI), by (2.4.1).
Consider Y =

⋃
h∈V I∩[1,nI ](v(xh−1ω + ωRh) \ v(ωRh)), a disjoint union by

definition. We define
ϕ : Y −→ ZZ≥c−c(I) \ v(I∗) via, for y ∈ Y, ϕ(y) = c− 1− y;

this is well defined by (2.3.5). By (2.11.1), ZZ≥c−c(I) = v(R : CI), and the result
follows.

For part (2), use the second inequality in (1) combined with (2.11.4), to get:
"R(I∗/R) ≤

∑
h∈[1,nI ] rh −

∑
h∈V I∩[1,nI ] rh =

∑
h/∈V I rh

= "R(R/I∗∗) +
∑

h/∈V I (rh − 1). .

Corollary 3.9 For every proper ideal I we have:

(1) d(I) ≥ 0.

(2) "R((ωI)/I) ≥
∑

(rh − 1) | h ∈ V I .

(3) "R(I/CI) ≤ "R((R : CI)/I∗).
Equality holds ⇐⇒ I is reflexive, d(I) = 0 and rh = 1 ∀ h ∈ V I ∩ [1, nI ].

(4) Assume R is almost Gorenstein. Then d(I) = 0 if I is non-principal,
d(I) = r − 1 otherwise.

Proof. The positivity of d(I) is a consequence of the last inequality in (3.8.1).
For assertion (2), by combining (3.1.5) and part (2) of Theorem 3.8, we get
a(I) ≤ a(I∗∗) = "R(I∗/R)− "R(R/I∗∗) ≤

∑
h/∈V I (rh − 1).

Using now (3.1.2), we conclude that:
"R((ωI)/I) = 2δ − c− a(I)

≥
∑∞

h=1(rh − 1)−
∑

h/∈V I (rh − 1) =
∑

h∈V I (rh − 1).
To prove (3), using I ⊆ I∗∗ and (3.8.1), consider the following chain of

inequalities:
"R(I/CI) ≤ "R(I∗∗/CI) ≤

∑
h∈V I∩[1,nI ] rh ≤ "R((R : CI)/I∗).



For the last statement, we note that the strict inclusion (m : I) ⊂ (R : I)
implies the existence of an element x ∈ K such that xI ⊆ R, but xI +⊆ m, then
xI = R, so I is a principal ideal. Therefore, the assumption I non-principal
insures that (R : I)I ⊆ m.

Now, if R is almost Gorenstein and I is non-principal, then ωI = I∗∗. In
fact, as observed in (2.4), the inclusion I∗∗ ⊆ ωI always holds. On the other
hand, (R : I)Iω ⊆ mω = m ⊂ R implies Iω ⊆ I∗∗ . The conclusion d(I) = 0
follows from (3.7.1), combined with the fact that d(I) is non-negative, as stated
in (1). The case I principal comes directly from (3.7.1), because rh = 1 for all
h /∈ V I , h += 1. .

The next theorem extends to any birational overring S of R the formulas
proved in [16] in the case of the blowing-up Λ of R along a proper ideal. We
remark also that for S = R the first inequality "R(S/R) ≤ r "R(R/(R : S))
becomes the well-known relation δ ≤ r(c− δ).

Theorem 3.10 Let R be as in Setting 2.1. Let S be an overring of R with
R ⊆ S ⊆ R, and let I := (R : S) be the conductor ideal of S into R. We have
the following relations:

(1) "R(S/R) =
∑

h/∈V I

rh − "R(S∗∗/S)− d(I) ≤ r "R(R/I).

(2) "R(S/R) =
∑

h≤h(I) rh − "R(S∗∗/S) + "R(S∗∗/R∗h(I)).

Proof. The hypothesis R ⊆ S ⊆ R ensures that the conductor CI of I equals
the conductor C of R. In fact, C is an R-ideal contained in I, so C ⊆ CI by
the maximality of CI with respect to this property. Since the other inclusion
obviously holds, we have C = CI . Then the proof of [16, Theorem 4.4] works
also in this general case, and we may omit the proof. .

From Theorem 3.8 we deduce the following two formulas which relate the
invariants a(I) and b(I) with the type sequence.

Theorem 3.11 For every proper ideal I of R we have:

(1) a(I) =
∑

h/∈V I (rh − 1)− "R(I∗∗/I)− d(I).

(2) b(I) =
∑

h/∈V I (r − rh) + r"R(I∗∗/I) + d(I).

Proof. Using Notation 1.3 and (3.5) we can write:
a(I) + d(I) + "R(I∗∗/I) =

= "R(I∗/R)− lR(R/I)+ "R((R : CI)/I∗)−
∑

h∈V I∩[1,nI ] rh + "R(I∗∗/I).
By (2.11.4), "R(I∗/R) =

∑
i∈[1,nI ] ri − "R((R : CI)/I∗) and, since I ⊆ I∗∗ ⊆ R,

we have "R(R/I)− "R(I∗∗/I) = "R(R/I∗∗). Thus
a(I) + d(I) + "R(I∗∗/I) =

∑
h/∈V I rh − "R(R/I∗∗)

=
∑

h/∈V I (rh − 1), by (3.6.3).
This proves part (1).



Using the relation a(I) + b(I) = (r − 1)"R(R/I) from (3.1.3) and part (1),
we can write:
b(I) = (r−1)["R(R/I∗∗)+"R(I∗∗/I)]−[

∑
h/∈V I rh−"R(R/I∗∗)−"R(I∗∗/I)−d(I)]

= r"R(R/I∗∗) + r"R(I∗∗/I)−
∑

h/∈V I rh + d(I),
and so part (2) follows by (3.6.3). .

Example 3.12 For the ideal I = (t10, t13) in the ring R of Example 2.6, we
have v(I∗∗) = {s3, s5, s6, s8, s10, s11, s13 →}; then

V I ={4, 6, 7, 9, 11, 12, 14 →} and V I ∩ [1, n] = {4, 6, 7}.
Recall that the type sequence is [2, 1, 1, 1, 2, 1, 1, 1].
Since

∑
(ri−1) | i ∈ V I = 0 and v(ωI)\v(I∗∗)={16}, by (3.7.1) we obtain that

d(I) = "R((ωI)/I∗∗) = 1.
Also,

∑
(ri−1) | i /∈ V I = 2 and "R(I∗∗/I) = 1, since v(I∗∗)\v(I)={27}; hence

equalities in (3.11) are verified.

From Theorem 3.11, we immediately get interesting lower and upper bounds.

Corollary 3.13 For a proper ideal I of R, set q := |{i /∈ V I | ri = 1}|. The
following inequalities hold:

(1) a(I) ≤ (r− 1)["R(R/I∗∗)− q]− "R(I∗∗/I) ≤ (r− 1)"R(R/I∗∗)− "R(I∗∗/I).
a(I) ≥ r − 1− "R(I∗∗/I)− d(I).
In particular, if I is such that ω ⊆ (I : I), then a(I) ≥ r − 1.

(2) b(I) ≤ (r − 1)("R(R/I)− 1) + "R(I∗∗/I) + d(I).
b(I) ≥ r"R(I∗∗/I) + (r − 1)q.

(3) (Vanishing condition)
b(I) = 0 ⇐⇒ I = I∗∗, rh = r for every h /∈ V I , and d(I) = 0.

Proof. To prove part (1), note that∑
h/∈V I (rh − 1) =

∑
(rh − 1) | h /∈ V I , rh += 1, and

|{h /∈ V I | rh += 1}| = "R(R/I∗∗)− q.
Now the inequalities of (1) come directly from (3.11.1), recalling that 1 ≤ rh ≤ r
for all h, by (2.7.2) and d(I) ≥ 0, by (3.9.1). When ω ⊆ (I : I), we have d(I) = 0,
by (3.7.4) and I∗∗ = I, by (2.4.2); hence a(I) ≥ r − 1.

Since a(I) + b(I) = (r − 1)"R(R/I), as observed in (3.1.3), statement (2)
follows easily from (1).

Assertion (3) is an immediate consequence of (3.11.2). .

By involving the inverse of the canonical ideal, we make the bounds in Corol-
lary 3.13 more explicit:

Corollary 3.14 If I satisfies the condition v(ω∗ ∩ I∗∗) = v(ω∗)∩ v(I∗∗), then:

(1) a(I) ≤ (r − 1)"R(R/(I∗∗ + ω∗))− "R(I∗∗/I).

(2) b(I) ≥ (r − 1)"R((I∗∗ + ω∗)/I) + "R(I∗∗/I).



Proof. Set H := {h + 1 | sh ∈ v(ω∗) \ v(ω∗ ∩ I∗∗)}, so ri = 1 for every i ∈ H
by (2.7.5). Also, |H| = "R(ω∗/(I∗∗ ∩ ω∗)) = "R((I∗∗ + ω∗)/I∗∗). Then∑

h/∈V I (rh − 1) =
∑

(rh − 1) | h /∈ V I ∪H
=

∑
(rh − 1) | h /∈ V I ∪H,h ∈ [1, n], since ri = 1 for i ≥ n

≤ (r − 1)N , where N := |[1, n] \ (V I ∪H)|.
Now, N = n− |(V I ∩ [1, n]) ∪ (H ∩ [1, n])|.
The assumption v(ω∗ ∩ I∗∗) = v(ω∗) ∩ v(I∗∗) insures that H ∩ V I = ∅, and so

N = n− |V I ∩ [1, n]|− |H ∩ [1, n]|
= "R(R/C)− "R((I∗∗ + C)/C)− "R((I∗∗ + ω∗)/(I∗∗ + C))
= "R(R/(I∗∗ + ω∗)).

Thus (3.11.1) implies the inequality of (1).
As in the preceding corollary, we derive (2) from (1). .

Remarks 3.15 (1) The upper bounds found in Corollary 3.13.1 improve the
result a(I) ≤ (r − 1)"R(R/I) obtained by Jäger [10, Korollar 3], while the first
inequality in (3.13.2) generalizes the upper bound b(C) ≤ (r− 1)("R(R/C)− 1),
already known for the conductor ideal [5, Proposition 2.1].

(2) The condition v(ω∗ ∩ I∗∗) = v(ω∗) ∩ v(I∗∗) in Corollary 3.14 is satisfied
for instance when I ⊆ ω∗; in fact, I ⊆ ω∗ =⇒ I∗∗ ⊆ ω∗∗∗ = ω∗. In particular
it holds for I = C, since C ⊆ ω∗, so inequality (3.14.2) extends the lower bound
b(C) ≥ (r − 1)"R(ω∗/C), stated in [15, Theorem 3.7].

(3) For I = C, using the second inequality in (3.13.2) we obtain
b(C) ≥ (r − 1)q ≥ (r − 1)"R(ω∗/C), where q = |{i ∈ [1, n] | ri = 1}|.

Finally we obtain a characterization of the almost Gorenstein property, de-
fined in (1.4), in terms of the invariant a(I) (see next (1) ⇐⇒ (5)), which is just
the analogue of a theorem stated by E. Matlis for Gorenstein rings [12, Theorem
13.1]. We recall that a fractional ideal I is said to be reflexive if it satisfies the
condition I = I∗∗.

Theorem 3.16 Here “ideal” means “fractional ideal”. Let R be as in Setting
2.1 and let ω be a canonical ideal for R such that R ⊆ ω ⊆ R. The following
facts are equivalent:

(1) R is almost Gorenstein.

(2) "R(Iω/I) = r − 1 for every principal ideal I.

(3) Iω = I∗∗ for every non-principal ideal I.

(4) For every pair of reflexive ideals I, J , such that J ⊆ I,

"R(I/J) = "R(J∗/I∗) + h(r − 1), where
h = 0 ⇐⇒ I, J are either both non-principal or both principal,
h = 1 ⇐⇒ I is non-principal and J is principal,
h = −1 ⇐⇒ I is principal and J is non-principal.

(5) a(I) = (r − 1)− "R(I∗∗/I) for every non-principal ideal I ⊆ R.



Proof. To see the equivalence (1) ⇐⇒ (2), we observe that "R(Iω/I) =
"R(ω/R) for every principal ideal I. Since "R(ω/R) = 2δ − c by (2.7.4), the
equivalence is immediate from Definition 1.4.

For (1) =⇒ (3), see the proof of item 4 in Corollary 3.9, which is valid also
for fractional ideals.

For the converse (3) =⇒ (1), it suffices to put I = m in (3), consequently
mω = m. Therefore, R is almost Gorenstein by (1.4).

Now we show (1) =⇒ (4). From the diagram
Iω ⊇ I
∪| ∪|

Jω ⊇ J

we see that "R(I/J) = "R((Iω)/(Jω))− "R((Iω)/I) + "R((Jω)/J). Since
"R(J∗/I∗) = "R((Iω)/(Jω))

by (2.3.2), the conclusion follows by using items 2 and 3.
To prove the implication (4) =⇒ (1), put I = m, J = C, and consequently

h = 0, in the formula of item 4. Clearly
"R(m/C) = c− δ − 1, "R(C∗/m∗) = δ − r,

and so we obtain 2δ − c = r − 1, which means R almost Gorenstein by (1.4).
It remains to prove that condition (5) is equivalent to the others. If R is

an almost Gorenstein ring, then equality (5) holds for every non-principal ideal
I ⊆ R, by Theorem 3.11.1, because in this hypothesis rh = 1 for all h += 1, by
(2.10.1), and d(I) = 0 by (3.9.4). Conversely, equality (5), with I = C, gives
immediately that r − 1 = 2δ − c. .

4 The conductor case.

In the special case of the conductor ideal C, the description of the invariant b(C)
in terms of type sequence given in (3.1.6.b),

b(C) =
n∑

h=1

(r − rh),

is useful for the classification of one-dimensional analytically irreducible local
rings having b(C) small enough. Results related to this problem that are already
in the literature can be found in [5], [6], [7], [8], [18].

Delfino gives a characterization of rings satisfying the condition b < r−1 and
a complete description of the value set of rings satisfying the condition b ≤ r,
under the additional assumption r = e − 1 in [7, Corollary 2.11 and Corollary
2.14]. See also Proposition 2.7 from [5] for a further generalization. In the
quoted paper [7] more attention is devoted to the invariant "R(R/(C + xR)),
where xR is a minimal reduction of m. In particular, it is proved that b =
r− 1 =⇒ "R(R/(C + xR)) = 1 or 2 [7, Proposition 2.4], and that b = r− 1 and
"R(R/(C + xR)) = 2 =⇒ r = e− 2 [7, Corollary 2.13]. In [8] the authors show
the inequality r"R(R/(C + xR)) ≤ b + e− 1, which is improved by means of the
type sequence in statement (4.3.1).

We fix the setting and notation for this section as follows:



Setting/Notation 4.1 We assume the setting of (2.1) and the notation of
(2.2) and (2.5) as well as the following:

• b := b(C) = r"R(R/C)− "R(R/R).

• x ∈ m is such that v(x) is the multiplicity e; "R(R/xR) = e [11, Ch.1].

• p ∈ IN is such that c− e ≤ pe < c. (p=0 ⇐⇒ c = e).

• i0 ∈ [1, n] is such that si0−1 = min{y ∈ v(R) | y ≥ c− e}.
(i0 = 1 ⇐⇒ c = e).

• B := [i0, n], A := [1, n] \ B.

Lemma 4.2 With notation as in (4.1),

(1) |B| = "R((C :R m)/C) = "R(R/(C + xR)) ≥ e− r ≥ 1.

(2)
∑

h∈B rh ≤ e− 1.

Proof. The following two observations are apparent from (2.2):
(i) v(C :R m) \ v(C) = {si ∈ v(R) | c− e ≤ si < c}.
(ii) The set {si ∈ v(R) | c− e ≤ si < c} is in 1-1 correspondence with the

interval [i0 − 1, n− 1].
Then

"R((C :R m)/C) = |v(C :R m) \ v(C)|, by (2.2.2)
= |[i0 − 1, n− 1]| = |B|, by (i) and (ii) above,

and so the first equality of item 1 is proved.
Claim: For x as in (4.1), x(C :R m) = xR ∩ C.
Proof of Claim: For “⊆”, let r ∈ (C :R m); now x ∈ m, and so xr ∈ C. For

“⊇”, using (4.1) and (2.2), v(x) = e and xR = teR = mR. If r ∈ R with xr ∈ C,
then rm ⊆ rxR ⊆ CR = C. Thus r ∈ (C :R m), xr ∈ x(C :R m), and the claim
holds.

We obtain the equalities
"R(R/(C :R m)) = "R(xR/x(C :R m)) = "R(xR/(xR∩C)) = "R((C+xR)/C),

and using the following diagram
(C :R m) ⊆ R

∪| ∪|

C ⊆ C + xR,

we see immediately that "R((C :R m)/C) = "R(R/(C + xR)). Finally,
x−1mC ⊆ R =⇒ (C + xR)m ⊆ xR, so that C + xR ⊆ (xR : m). Hence
"R((C + xR)/xR) ≤ "R((xR : m)/xR)

= "R(R : m)/R) = r, since (xR : m) = x(R : m), and
"R(R/(C + xR)) = "R(R/xR)− "R((C + xR)/xR) ≥ e− r.

This completes the proof of (1).
We now prove part (2). Since ωRi0−1 ⊆ ω and c− 1 /∈ v(ω), by (2.3.4), we

have that v(ωRi0−1)<c ⊆ [c− e, c− 2], so |v(ωRi0−1)<c| ≤ e− 1. Thus∑
h∈B rh =

∑n
h=i0

rh = "R((ωRi0−1)/(ωRn)), by (2.7.6)



= "R((ωRi0−1)/C) = |v(ωRi0−1)<c| ≤ e− 1. .

Next we give two formulas relating b = b(C) to the type sequence. They are
important for further calculations. Inequality (2) improves [8, Theorem 2.3].

Theorem 4.3 With the notation and setting as in (4.1), the following inequal-
ities hold:

(1) b + e− 1 ≥ b +
∑

h∈B rh =
∑

h∈A(r − rh) + r"R(R/(C + xR)).

(2) b ≥ (r − 1)(e− r − 1) +
∑

h∈A(r − rh).

Proof. (1) The first inequality follows from (4.2.2). To complete the proof
of (1), we see that

b =
∑n

h=1(r − rh), by (3.1.6.b)
=

∑
h∈A(r − rh) +

∑
h∈B(r − rh) from (4.1)

=
∑

h∈A(r − rh) + r"R(R/(C + xR)) −
∑

h∈B rh, by Lemma 4.2, and so
item 1 holds.

From the last equality and (4.2.2) we deduce part (2). In fact, recalling that
"R(R/(C + xR)) ≥ e− r , we obtain

b ≥
∑

h∈A(r − rh) + r(e− r)− (e− 1), as desired. .

Formula (4.3.1) suggests that the composition length of R/(C + xR) is es-
pecially important in this context. The next lemma describes in detail the case
"R(R/(C + xR)) = 1; the cases of length ≥ 2 are treated in [17].

Lemma 4.4 With the notation of (4.1), the following facts are equivalent:

(1) "R(R/(C + xR)) = 1.

(2) v(R) = {0, e, ..., pe, c →}.

(3) The type sequence of R, defined in (2.5), is [e−1, ...., e−1, rn].

If R satisfies these equivalent conditions, then:
δ = c− p− 1, b = e(p + 1)− c ≤ r − 1, r = e− 1, rn = e− 1− b.

Proof. Clearly (1) holds ⇐⇒ C+xR = m ⇐⇒ (2) holds, since v(x) = e, by
(4.1). Also (1) =⇒ r = e−1, by (4.2.1), and (2) =⇒ p = n−1, i.e., δ = c−p−1.

To see (2) =⇒ (3), first we note that
(R : Rn−1) = (R : (xpR + C)) = (x−pR) ∩R = x−p(R ∩ xpR).

Now recalling Definition 2.5 we obtain:∑n−1
h=1 rh = "R((R : Rn−1)/R) = "R((R ∩ xpR)/xpR) = "R(Rn−1/xpR)

= "R(R/xpR)− "R(R/Rn−1) = ep− p = r(n− 1).
Hence rh = r for each h = 1, ..., n− 1. Since b =

∑n
h=1(r − rh), by (3.1.6.b), it

follows immediately that b = r − rn. Therefore, b < r and the type sequence is
[e− 1, ...., e− 1, e− 1− b].
The assumption in (3) rh = e − 1, for h ∈ [1, n], implies that sh = he, by

Proposition 4.9 of [15]. Hence (3) =⇒ (2) follows easily. .



Lemma 4.5 (1) If 0 ≤ b < r − 1, then e− r = "R(R/(C + xR)) = 1.

(2) If b = r − 1 > 0, then there are two possibilities:
(i) e− r = "R(R/(C + xR)) = 2 or (ii) e− r = "R(R/(C + xR)) = 1.

Proof. If b < r− 1, from (4.3.2) we get (r− 1)(e− r− 2) < 0 , so e− r < 2.
Analogously, b = r − 1 > 0 =⇒ e− r ≤ 2. Now, in both cases we obtain

r"R(R/(C + xR)) ≤ e + r − 2, by (4.3.1).
It follows that

"R(R/(C + xR)) = 1, when e = r + 1,
"R(R/(C + xR)) ≤ 2, when e = r + 2.

By (4.4), e− r = 2 =⇒ "R(R/(C + xR)) > 1, and so we are done. .
By combining the above two lemmas, we deduce immediately the statements

of the next theorem, which are partially already known (see [4], [7], [8], [6]).
Nevertheless, in our setting, they give a complete characterization of all rings
having "R(R/(C + xR)) = 1.

Theorem 4.6 Let R have the setting and notation of (4.1) and suppose that R
is not Gorenstein. Let ts(R) denote the type sequence of R. Then:

(1) The following facts are equivalent:

(a) b < r − 1.
(b) v(R) = {0, e, .., pe, c →} with pe + 2 < c ≤ (p + 1)e.
(c) ts(R) = [e− 1, ..., e− 1, rn], rn > 1.

If these conditions hold, then:
"R(R/(C + xR)) = 1, c = (p + 1)e− b, r = e−1, rn = e−1−b.

(2) The following facts are equivalent:

(d) b = r − 1 and "R(R/(C + xR)) = 1.
(e) v(R) = {0, e, .., pe, pe + 2 = c →}.
(f) ts(R) = [e− 1, ..., e− 1, 1].

Proof. For part (1), we begin by proving that (a) =⇒ (b). By (4.5.1),
"R(R/(C + xR)) = 1. Applying (4.4), we get

v(R) = {0, e, 2e, ..., pe, c →}, with (p + 1)e ≥ c, by (4.1), and also
r = e− 1, b = (p + 1)e− c.

Clearly the hypothesis b < r − 1 gives pe + 2 < c, and so (b) holds.
Applying again (4.4), we see that (b) implies that the type sequence of R is
[e− 1, ..., e− 1, rn], and also b = (p + 1)e− c.

Then the hypothesis c > pe + 2 gives b < e− 2; thus rn = e− 1− b > 1 and
the proof of (b) =⇒ (c) is complete.

If (c) holds, then by (4.4), r − rn = b, and so r − b = rn > 1, i.e. the
inequality of (a) holds.

Part (2) follows immediately by applying Lemma 4.4. .



Note. A natural continuation is to classify singularities having b ≥ r − 1 and
"R(R/(C+xR)) ≥ 2. This can be done, using the methods in this paper, until b
reaches 3(r−1); for the proofs we refer to the separate paper [17], in preparation.
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